Aronszajn trees and Kurepa trees

Marlene Koelbing joint work with Sy-David Friedman

> University of Vienna Kurt Gödel Research Center

Winter School in Abstract Analysis 2022 30. January 2022

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 A λ-tree is a tree (T, <_T) of height λ all whose levels are smaller than λ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 A λ-tree is a tree (T, <_T) of height λ all whose levels are smaller than λ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition

1 A λ -Aronszajn tree is a λ -tree which has no branch.

 A λ-tree is a tree (T, <_T) of height λ all whose levels are smaller than λ.

Definition

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- A λ⁺-tree T is called special if there exists a function
 f: T → λ such that for s, t ∈ T, if s <_T t, then f(s) ≠ f(t).

 A λ-tree is a tree (T, <_T) of height λ all whose levels are smaller than λ.

Definition

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- A λ⁺-tree T is called special if there exists a function
 f: T → λ such that for s, t ∈ T, if s <_T t, then f(s) ≠ f(t).
- A λ-Kurepa tree is a λ-tree which has more than λ many branches.

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- ② A λ^+ -tree T is called special if there exists a function f: T → λ such that for s, t ∈ T, if s <_T t, then f(s) ≠ f(t).

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- **2** A λ^+ -tree T is called special if there exists a function $f: T \to \lambda$ such that for $s, t \in T$, if $s <_T t$, then $f(s) \neq f(t)$.
 - i.e., a specializing function is injective on linearly ordered sets

- 日本 - 4 日本 - 4 日本 - 日本

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- **2** A λ^+ -tree T is called special if there exists a function $f: T \to \lambda$ such that for $s, t \in T$, if $s <_T t$, then $f(s) \neq f(t)$.
 - i.e., a specializing function is injective on linearly ordered sets

• a branch would induce an injection from λ^+ to λ :

special trees have no branches!

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- ② A λ^+ -tree T is called special if there exists a function f: T → λ such that for s, t ∈ T, if s <_T t, then f(s) ≠ f(t).
 - i.e., a specializing function is injective on linearly ordered sets
 - a branch would induce an injection from λ^+ to λ : special trees have no branches!
 - a λ^+ -tree is special \iff it is the union of λ many antichains

- one of the λ many antichains would have size λ^+

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- ② A λ^+ -tree T is called special if there exists a function f: T → λ such that for s, t ∈ T, if s <_T t, then f(s) ≠ f(t).
 - i.e., a specializing function is injective on linearly ordered sets
 - a branch would induce an injection from λ⁺ to λ: special trees have no branches!
 - a λ^+ -tree is special \iff it is the union of λ many antichains

- one of the λ many antichains would have size λ^+
- Therefore, a Suslin tree cannot be special

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- ② A λ^+ -tree T is called special if there exists a function f: T → λ such that for s, t ∈ T, if s <_T t, then f(s) ≠ f(t).
 - i.e., a specializing function is injective on linearly ordered sets
 - a branch would induce an injection from λ⁺ to λ: special trees have no branches!
 - a λ^+ -tree is special \iff it is the union of λ many antichains
 - one of the λ many antichains would have size λ^+
 - Therefore, a Suslin tree cannot be special
 - ... you can also view it in the following way: if there were a special Suslin tree, forcing with it would result in a special tree which has a branch, so λ^+ would be collapsed, contradicting the λ^+ -c.c. of the Suslin tree.

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- ② A λ^+ -tree T is called special if there exists a function f: T → λ such that for s, t ∈ T, if s <_T t, then f(s) ≠ f(t).

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- **2** A λ^+ -tree T is called special if there exists a function $f: T \to \lambda$ such that for $s, t \in T$, if $s <_T t$, then $f(s) \neq f(t)$.

Fact

Intere are no ℵ₀-Aronszajn trees. (König's Lemma)

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- **2** A λ^+ -tree T is called special if there exists a function $f: T \to \lambda$ such that for $s, t \in T$, if $s <_T t$, then $f(s) \neq f(t)$.

Fact

- Intere are no ℵ₀-Aronszajn trees. (König's Lemma)
- **2** There are always \aleph_1 -Aronszajn trees.

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- **2** A λ^+ -tree T is called special if there exists a function $f: T \to \lambda$ such that for $s, t \in T$, if $s <_T t$, then $f(s) \neq f(t)$.

Fact

- Intere are no ℵ₀-Aronszajn trees. (König's Lemma)
- There are always ℵ₁-Aronszajn trees.
- **(3)** the existence of \aleph_2 -Aronszajn trees is independent of ZFC:
 - under CH, there exists an ℵ₂-Aronszajn tree
 - in Mitchell's model, the tree property on ℵ₂ holds (needs a weakly compact cardinal)

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- ② A λ^+ -tree T is called special if there exists a function f: T → λ such that for s, t ∈ T, if s <_T t, then f(s) ≠ f(t).

Fact

- Intere are no ℵ₀-Aronszajn trees. (König's Lemma)
- There are always ℵ₁-Aronszajn trees.
- **(3)** the existence of \aleph_2 -Aronszajn trees is independent of ZFC:
 - under CH, there exists an \aleph_2 -Aronszajn tree
 - in Mitchell's model, the tree property on ℵ₂ holds (needs a weakly compact cardinal)
- **9** If $2^{\lambda} = \lambda^+$, then there exists a special λ^{++} -Aronszajn tree.

- **1** A λ -Aronszajn tree is a λ -tree which has no branch.
- ② A λ^+ -tree T is called special if there exists a function f: T → λ such that for s, t ∈ T, if s <_T t, then f(s) ≠ f(t).

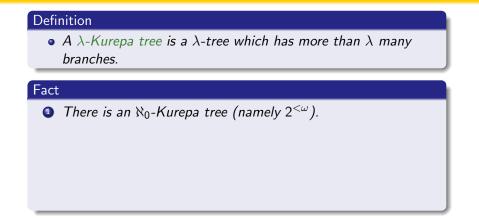
Fact

- Intere are no ℵ₀-Aronszajn trees. (König's Lemma)
- There are always ℵ₁-Aronszajn trees.
- **(3)** the existence of \aleph_2 -Aronszajn trees is independent of ZFC:
 - under CH, there exists an \aleph_2 -Aronszajn tree
 - in Mitchell's model, the tree property on ℵ₂ holds (needs a weakly compact cardinal)
- If $2^{\lambda} = \lambda^+$, then there exists a special λ^{++} -Aronszajn tree.
- **(3)** If κ is inaccessible, then

there is a κ -Aronszajn tree $\iff \kappa$ is not weakly compact.

 A λ-Kurepa tree is a λ-tree which has more than λ many branches.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 差||||の��

 A λ-Kurepa tree is a λ-tree which has more than λ many branches.

Fact

- There is an \aleph_0 -Kurepa tree (namely $2^{<\omega}$).
- **2** the existence of \aleph_1 -Kurepa trees is independent of ZFC:
 - under \Diamond^+ (i.e., in particular in V = L), there exists an \aleph_1 -Kurepa tree
 - it is consistent that there exists no ℵ₁-Kurepa tree (needs an inaccessible cardinal)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main Theorem

Theorem

There exists a model of ZFC in which for all $0 < n \in \omega$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Main Theorem

Theorem

There exists a model of ZFC in which for all $0 < n \in \omega$

there exists an \aleph_n -Aronszajn tree,

Main Theorem

Theorem

There exists a model of ZFC in which for all $0 < n \in \omega$

there exists an \aleph_n -Aronszajn tree, all \aleph_n -Aronszajn trees are special.

イロト 不得 トイヨト イヨト

3

Main Theorem

Theorem

There exists a model of ZFC in which for all $0 < n \in \omega$

there exists an \aleph_n -Aronszajn tree, all \aleph_n -Aronszajn trees are special, and there exists no \aleph_n -Kurepa tree.

ヘロン 人間 とくほと くほとう

э

Theorem

There exists a model of ZFC in which

there exists an \aleph_2 -Aronszajn tree, all \aleph_2 -Aronszajn trees are special, and there exists no \aleph_2 -Kurepa tree.

Theorem

There exists a model of ZFC in which

there exists an <mark>ℵ</mark>2-Aronszajn tree,

all \aleph_2 -Aronszajn trees are special,

and there exists no \aleph_2 -Kurepa tree and no \aleph_1 -Kurepa tree.

ヘロン 人間 とくほと くほとう

э

Theorem (Laver-Shelah)

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree, all ℵ₂-Aronszajn trees are special.

Theorem (Baumgartner-Malitz-Reinhardt)

There exists a model of ZFC in which

there exists an ℵ₁-Aronszajn tree, all ℵ₁-Aronszajn trees are special.

Theorem (Baumgartner-Malitz-Reinhardt)

There exists a model of ZFC in which

there exists an \aleph_1 -Aronszajn tree, (always true) all \aleph_1 -Aronszajn trees are special.

Definition

Let T be an \aleph_1 -Aronszajn tree. Let $\mathbb{S}(T)$ be the forcing consisting of conditions p satisfying the following:

- **9** $p: T \rightarrow \omega$ is a finite partial function
- **2** if $s, t \in dom(p)$ and $s <_T t$, then $p(s) \neq p(t)$.

The order is given by $q \leq p$ if $q \supseteq p$.

Definition

Let T be an \aleph_1 -Aronszajn tree. Let $\mathbb{S}(T)$ be the forcing consisting of conditions p satisfying the following:

- **9** $p: T \rightarrow \omega$ is a finite partial function
- **2** if $s, t \in dom(p)$ and $s <_T t$, then $p(s) \neq p(t)$.

The order is given by $q \leq p$ if $q \supseteq p$.

() For $t \in T$, the set of conditions p with $t \in dom(p)$ is dense

- the generic function $f: T \rightarrow \omega$ is total,
- the generic function is a specializing function.

Definition

Let T be an \aleph_1 -Aronszajn tree. Let $\mathbb{S}(T)$ be the forcing consisting of conditions p satisfying the following:

- **9** $p: T \rightarrow \omega$ is a finite partial function
- **2** if $s, t \in dom(p)$ and $s <_T t$, then $p(s) \neq p(t)$.

The order is given by $q \leq p$ if $q \supseteq p$.

- **1** For $t \in T$, the set of conditions p with $t \in dom(p)$ is dense
 - the generic function $f: T \rightarrow \omega$ is total,
 - the generic function is a specializing function.
- **2** if T has a branch b, then $\mathbb{S}(T)$ adds an injection $f: b \to \omega$
 - ω_1 is collapsed to ω .

Definition

Let T be an \aleph_1 -Aronszajn tree. Let $\mathbb{S}(T)$ be the forcing consisting of conditions p satisfying the following:

- **9** $p: T \rightarrow \omega$ is a finite partial function
- 3) if $s, t \in dom(p)$ and $s <_T t$, then $p(s) \neq p(t)$.

The order is given by $q \leq p$ if $q \supseteq p$.

- **1** For $t \in T$, the set of conditions p with $t \in dom(p)$ is dense
 - the generic function $f: T \rightarrow \omega$ is total,
 - the generic function is a specializing function.
- **2** if T has a branch b, then $\mathbb{S}(T)$ adds an injection $f: b \to \omega$

- ω_1 is collapsed to ω .
- **③** If T is Aronszajn, then $\mathbb{S}(T)$ does not collapse cardinals
 - it has the c.c.c. (difficult)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Baumgartner-Malitz-Reinhardt)

There exists a model of ZFC in which

there exists an ℵ₁-Aronszajn tree, (always true) all ℵ₁-Aronszajn trees are special.

• Start with a model of $2^{\aleph_1} = \aleph_2$.

Theorem (Baumgartner-Malitz-Reinhardt)

There exists a model of ZFC in which

there exists an ℵ₁-Aronszajn tree, (always true) all ℵ₁-Aronszajn trees are special.

• Start with a model of $2^{\aleph_1} = \aleph_2$.

Use a finite support iteration of length ω₂ to specialize ℵ₁-Aronszajn trees.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Baumgartner-Malitz-Reinhardt)

There exists a model of ZFC in which

there exists an ℵ₁-Aronszajn tree, (always true) all ℵ₁-Aronszajn trees are special.

- Start with a model of $2^{\aleph_1} = \aleph_2$.
- Output State S
- S The iteration is c.c.c. (f.s.i. of c.c.c. forcings is c.c.c.)

There exists a model of ZFC in which

there exists an ℵ₁-Aronszajn tree, (always true) all ℵ₁-Aronszajn trees are special.

- Start with a model of $2^{\aleph_1} = \aleph_2$.
- Use a finite support iteration of length ω₂ to specialize ℵ₁-Aronszajn trees.
- S The iteration is c.c.c. (f.s.i. of c.c.c. forcings is c.c.c.)

• $2^{\aleph_1} = \aleph_2$ stays true during the iteration.

There exists a model of ZFC in which

there exists an ℵ₁-Aronszajn tree, (always true) all ℵ₁-Aronszajn trees are special.

- Start with a model of $2^{\aleph_1} = \aleph_2$.
- Use a finite support iteration of length ω₂ to specialize ℵ₁-Aronszajn trees.
- S The iteration is c.c.c. (f.s.i. of c.c.c. forcings is c.c.c.)
- $2^{\aleph_1} = \aleph_2$ stays true during the iteration.
- Since \aleph_1 -Aronszajn trees have size \aleph_1 , there are only \aleph_2 many.

There exists a model of ZFC in which

there exists an ℵ₁-Aronszajn tree, (always true) all ℵ₁-Aronszajn trees are special.

- Start with a model of $2^{\aleph_1} = \aleph_2$.
- Use a finite support iteration of length ω₂ to specialize ℵ₁-Aronszajn trees.
- S The iteration is c.c.c. (f.s.i. of c.c.c. forcings is c.c.c.)
- $2^{\aleph_1} = \aleph_2$ stays true during the iteration.
- Since \aleph_1 -Aronszajn trees have size \aleph_1 , there are only \aleph_2 many.

• Use a bookkeeping to specialize all \aleph_1 -Aronszajn trees.

There exists a model of ZFC in which

there exists an ℵ₁-Aronszajn tree, (always true) all ℵ₁-Aronszajn trees are special.

- Start with a model of $2^{\aleph_1} = \aleph_2$.
- Use a finite support iteration of length ω₂ to specialize ℵ₁-Aronszajn trees.
- S The iteration is c.c.c. (f.s.i. of c.c.c. forcings is c.c.c.)
- $2^{\aleph_1} = \aleph_2$ stays true during the iteration.
- Since \aleph_1 -Aronszajn trees have size \aleph_1 , there are only \aleph_2 many.
- **o** Use a **bookkeeping** to specialize all \aleph_1 -Aronszajn trees.
- If T is special, then it stays special.

Theorem (Baumgartner-Malitz-Reinhardt)

There exists a model of ZFC in which

there exists an ℵ₁-Aronszajn tree, (always true) all ℵ₁-Aronszajn trees are special.

ヘロト ヘ週ト ヘヨト ヘヨト

3

Back to \aleph_2 -trees:

Theorem (Laver-Shelah)

There exists a model of ZFC in which

there exists an \aleph_2 -Aronszajn tree, all \aleph_2 -Aronszajn trees are special. Back to \aleph_2 -trees:

Theorem (Laver-Shelah)

There exists a model of ZFC in which

there exists an \aleph_2 -Aronszajn tree, all \aleph_2 -Aronszajn trees are special.

In fact, their aim was to get a model of

 $CH+\mathrm{no}$ $\aleph_2\text{-}\mathrm{Suslin}$ tree.

There exists a model of ZFC in which

there exists an \aleph_2 -Aronszajn tree,

all N₂-Aronszajn trees are special.

Specializing \aleph_1 -Aronszajn trees:

Definition

Let T be an \aleph_1 -Aronszajn tree. Let $\mathbb{S}(T)$ be the forcing consisting of conditions p satisfying the following:

- **1** $p: T \rightarrow \omega$ is a finite partial function
- 2 if $s, t \in dom(p)$ and $s <_T t$, then $p(s) \neq p(t)$.

The order is given by $q \leq p$ if $q \supseteq p$.

• $\mathbb{S}(T)$ has the c.c.c.

There exists a model of ZFC in which

there exists an \aleph_2 -Aronszajn tree,

all \aleph_2 -Aronszajn trees are special.

Specializing ℵ₂-Aronszajn trees:

Definition

Let T be an \aleph_2 -Aronszajn tree. Let $\mathbb{S}(T)$ be the forcing consisting of conditions p satisfying the following:

1 $p: T \rightarrow \omega_1$ is a countable partial function

2) if
$$s, t \in dom(p)$$
 and $s <_T t$, then $p(s) \neq p(t)$.

The order is given by $q \leq p$ if $q \supseteq p$.

There exists a model of ZFC in which

there exists an \aleph_2 -Aronszajn tree,

all \aleph_2 -Aronszajn trees are special.

Specializing ℵ₂-Aronszajn trees:

Definition

Let T be an \aleph_2 -Aronszajn tree. Let $\mathbb{S}(T)$ be the forcing consisting of conditions p satisfying the following:

1 $p: T \rightarrow \omega_1$ is a countable partial function

2) if
$$s, t \in dom(p)$$
 and $s <_T t$, then $p(s) \neq p(t)$.

The order is given by $q \leq p$ if $q \supseteq p$.

• Want $\mathbb{S}(T)$ to have the \aleph_2 -c.c. (needs a weakly compact)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree, all ℵ₂-Aronszajn trees are special.

Lemma (Laver-Shelah)

If κ_2 is weakly compact, then in the extension by $col(\aleph_1, <\kappa_2)$,

(日)、(四)、(E)、(E)、(E)

$$\kappa_2 = \aleph_2$$

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree, all ℵ₂-Aronszajn trees are special.

Lemma (Laver-Shelah)

If κ_2 is weakly compact, then in the extension by $col(\aleph_1, <\kappa_2)$, $\kappa_2 = \aleph_2$ and $\mathbb{S}(T)$ has the \aleph_2 -c.c. for each \aleph_2 -Aronszajn tree T.

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree, all ℵ₂-Aronszajn trees are special.

Lemma (Laver-Shelah)

If κ_2 is weakly compact, then in the extension by $col(\aleph_1, <\kappa_2)$,

 $\kappa_2 = \aleph_2$ and $\mathbb{S}(T)$ has the \aleph_2 -c.c. for each \aleph_2 -Aronszajn tree T.

Ouse a countable support iteration of length ω₃ and bookkeeping to specialize all ℵ₂-Aronszajn trees.

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree, all ℵ₂-Aronszajn trees are special.

Lemma (Laver-Shelah)

If κ_2 is weakly compact, then in the extension by $col(\aleph_1, <\kappa_2)$,

 $\kappa_2 = \aleph_2$ and $\mathbb{S}(T)$ has the \aleph_2 -c.c. for each \aleph_2 -Aronszajn tree T.

- Output See a countable support iteration of length ω₃ and bookkeeping to specialize all ℵ₂-Aronszajn trees.
- 2 It is shown "by hand" that also the iteration has the \aleph_2 -c.c.

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree, all ℵ₂-Aronszajn trees are special.

Lemma (Laver-Shelah)

If κ_2 is weakly compact, then in the extension by $\operatorname{col}(\aleph_1, <\kappa_2)$,

 $\kappa_2 = \aleph_2$ and $\mathbb{S}(T)$ has the \aleph_2 -c.c. for each \aleph_2 -Aronszajn tree T.

- Ouse a countable support iteration of length ω₃ and bookkeeping to specialize all ℵ₂-Aronszajn trees.
- ② It is shown "by hand" that also the iteration has the \aleph_2 -c.c.
- Warning: there is no iteration theorem for countable support iterations with ℵ₂-c.c. iterands.

ヘロト ヘ回ト ヘヨト ヘヨト

3

Theorem (Laver-Shelah)

There exists a model of ZFC in which

there exists an \aleph_2 -Aronszajn tree, all \aleph_2 -Aronszajn trees are special.

There exists an \aleph_2 -Aronszajn tree, because:

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree, all ℵ₂-Aronszajn trees are special.

There exists an \aleph_2 -Aronszajn tree, because:

- $\operatorname{col}(\aleph_1, <\kappa_2)$ collapses 2^{\aleph_0} to \aleph_1 .
- Both col(ℵ₁, <κ₂) and the subsequent iteration are σ-closed, so there are no new reals added.

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree, all ℵ₂-Aronszajn trees are special.

There exists an \aleph_2 -Aronszajn tree, because:

- $\operatorname{col}(\aleph_1, <\kappa_2)$ collapses 2^{\aleph_0} to \aleph_1 .
- Both col(ℵ₁, <κ₂) and the subsequent iteration are σ-closed, so there are no new reals added.
- So CH holds in the final model (which implies its existence).

Theorem

There exists a model of ZFC in which

there exists an №₂-Aronszajn tree, all №₂-Aronszajn trees are special, and there exists no №₂-Kurepa tree and no №₁-Kurepa tree.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem (Silver)

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. There is no \aleph_n -Kurepa tree in the extension by \mathbb{L} .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Theorem (Silver)

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. There is no \aleph_n -Kurepa tree in the extension by \mathbb{L} .

Lemma (Silver)

Let \mathbb{R} be a forcing which is $<\aleph_n$ -closed. Then \mathbb{R} does not add branches to \aleph_n -trees.

Theorem (Silver)

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. There is no \aleph_n -Kurepa tree in the extension by \mathbb{L} .

Lemma (Silver)

Let \mathbb{R} be a forcing which is $<\aleph_n$ -closed. Then \mathbb{R} does not add branches to \aleph_n -trees.

Lemma (Unger)

In V, let

- \mathbb{P} be a forcing which has the \aleph_n -c.c., and
- \mathbb{R} be a forcing which is $< \aleph_n$ -closed.

In $V^{\mathbb{P}}$, let T be an \aleph_n -tree. Then forcing with \mathbb{R} over $V^{\mathbb{P}}$ does not add branches to T.

Theorem (Silver)

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. There is no \aleph_n -Kurepa tree in the extension by \mathbb{L} .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Theorem (Silver)

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. There is no \aleph_n -Kurepa tree in the extension by \mathbb{L} .

The following is a generalization of Silver's Theorem:

Lemma

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Theorem (Silver)

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. There is no \aleph_n -Kurepa tree in the extension by \mathbb{L} .

The following is a generalization of Silver's Theorem:

Lemma

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\leq \aleph_n$ such that

Theorem (Silver)

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. There is no \aleph_n -Kurepa tree in the extension by \mathbb{L} .

The following is a generalization of Silver's Theorem:

Lemma

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\leq \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive

Theorem (Silver)

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. There is no \aleph_n -Kurepa tree in the extension by \mathbb{L} .

The following is a generalization of Silver's Theorem:

Lemma

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c.

Theorem (Silver)

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. There is no \aleph_n -Kurepa tree in the extension by \mathbb{L} .

The following is a generalization of Silver's Theorem:

Lemma

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

•
$$\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda) = \prod_{\alpha < \lambda} \operatorname{col}(\aleph_n, \alpha) = \mathbb{L}_{<\mu} * \mathbb{L}_{[\mu,\lambda)}$$
, with
• $\mathbb{L}_{<\mu} = \operatorname{col}(\aleph_n, <\mu) = \prod_{\alpha < \mu} \operatorname{col}(\aleph_n, \alpha)$,
• $\mathbb{L}_{[\mu,\lambda)} = \prod_{\mu \le \alpha < \lambda} \operatorname{col}(\aleph_n, \alpha)$.

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

• and hence $|[T]| < \lambda$.

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

•
$$V^{\mathbb{L}<\mu*\mathbb{Q}}\models |[T]|<\lambda.$$

•
$$\mathbb{L} = \mathbb{L}_{<\mu} * \mathbb{L}_{[\mu,\lambda)}$$
.

Now L * Q is forcing equivalent to L_{<μ} * Q * Ľ_{[μ,λ)}.

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

•
$$V^{\mathbb{L}_{<\mu}*\mathbb{Q}} \models |[T]| < \lambda.$$

•
$$\mathbb{L} = \mathbb{L}_{<\mu} * \mathbb{L}_{[\mu,\lambda)}$$
.

- Now L * Q is forcing equivalent to L_{<μ} * Q * Ľ_{[μ,λ)}.
 - If Q is <ℵ_n-distributive, L_{[µ,λ)} is <ℵ_n-closed in V^{L_{<µ}*Q}. So, by Silver's Lemma, it does not add branches to T.

Lemma

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

•
$$V^{\mathbb{L}_{<\mu}*\mathbb{Q}} \models |[T]| < \lambda.$$

•
$$\mathbb{L} = \mathbb{L}_{<\mu} * \mathbb{L}_{[\mu,\lambda)}$$
.

Now L * Q is forcing equivalent to L_{<μ} * Q * Ľ_{[μ,λ)}.

 If Q is <ℵ_n-distributive, L_{[µ,λ)} is <ℵ_n-closed in V^{L_{<µ}*Q}. So, by Silver's Lemma, it does not add branches to T.

If Q has the ℵ_n-c.c., Unger's Lemma implies that L_{[µ,λ)} does not add branches to T.

Lemma

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that either \mathbb{Q} is $<\aleph_n$ -distributive or \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

•
$$V^{\mathbb{L}_{<\mu}*\mathbb{Q}} \models |[T]| < \lambda.$$

•
$$\mathbb{L} = \mathbb{L}_{<\mu} * \mathbb{L}_{[\mu,\lambda)}.$$

Now L * Q is forcing equivalent to L_{<μ} * Q * Ľ_{[μ,λ)}.

- If Q is <ℵ_n-distributive, L_{[µ,λ)} is <ℵ_n-closed in V^{L<µ*Q}. So, by Silver's Lemma, it does not add branches to T.
- If Q has the ℵ_n-c.c., Unger's Lemma implies that L_{[µ,λ)} does not add branches to T.
- Thus T has less than λ = ℵ_{n+1} many branches in V[⊥]*^ℚ, so T is not a Kurepa tree.

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree,

all \aleph_2 -Aronszajn trees are special,

and there exists no \aleph_2 -Kurepa tree and no \aleph_1 -Kurepa tree.

・ロト ・ 一下・ ・ モト・ ・ モト・

э

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree,

all ℵ₂-Aronszajn trees are special,

and there exists no \aleph_2 -Kurepa tree and no \aleph_1 -Kurepa tree.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

• Start with a ground model in which

- κ_2 is supercompact, and
- κ_3 is weakly compact, with $\kappa_3 > \kappa_2$.

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree,

all \aleph_2 -Aronszajn trees are special,

and there exists no \aleph_2 -Kurepa tree and no \aleph_1 -Kurepa tree.

• Start with a ground model in which

- κ_2 is supercompact, and
- κ_3 is weakly compact, with $\kappa_3 > \kappa_2$.
- Force with L₂ * L₃ := col(ℵ₁, <κ₂) * col(κ₂, <κ₃), so κ₂ becomes ℵ₂, and κ₃ becomes ℵ₃.

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree,

all \aleph_2 -Aronszajn trees are special,

and there exists no \aleph_2 -Kurepa tree and no \aleph_1 -Kurepa tree.

- Start with a ground model in which
 - κ_2 is supercompact, and
 - κ_3 is weakly compact, with $\kappa_3 > \kappa_2$.
- Force with L₂ * L₃ := col(ℵ₁, <κ₂) * col(κ₂, <κ₃), so κ₂ becomes ℵ₂, and κ₃ becomes ℵ₃.
- Then use forcings $\mathbb{S}(T)$ to specialize all \aleph_2 -Aronszajn trees.
 - Use a countable support iteration of length ω₃ and bookkeeping to get a model in which all of them are special.
 - Denote the specializing iteration by \mathbb{S}_{ω_3}

There exists a model of ZFC in which

there exists an ℵ₂-Aronszajn tree,

all \aleph_2 -Aronszajn trees are special,

and there exists no \aleph_2 -Kurepa tree and no \aleph_1 -Kurepa tree.

- Start with a ground model in which
 - κ_2 is supercompact, and
 - κ_3 is weakly compact, with $\kappa_3 > \kappa_2$.
- Force with L₂ * L₃ := col(ℵ₁, <κ₂) * col(κ₂, <κ₃), so κ₂ becomes ℵ₂, and κ₃ becomes ℵ₃.
- Then use forcings S(T) to specialize all ℵ₂-Aronszajn trees.
 - Use a countable support iteration of length ω₃ and bookkeeping to get a model in which all of them are special.
 - Denote the specializing iteration by \mathbb{S}_{ω_3}
- CH holds in final model: so there exists an \aleph_2 -Aronszajn tree.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

There exists a model of ZFC in which

there exists an \aleph_2 -Aronszajn tree,

all \aleph_2 -Aronszajn trees are special,

and there exists no \aleph_2 -Kurepa tree and no \aleph_1 -Kurepa tree.

- All iterands $\mathbb{S}(T)$ and the whole iteration \mathbb{S}_{ω_3} have the \aleph_2 -c.c.
 - Use the supercompact embedding of κ₂ together with a combinatorial argument (quite involved).

There exists a model of ZFC in which

there exists an \aleph_2 -Aronszajn tree,

all \aleph_2 -Aronszajn trees are special,

and there exists no \aleph_2 -Kurepa tree and no \aleph_1 -Kurepa tree.

- All iterands $\mathbb{S}(T)$ and the whole iteration \mathbb{S}_{ω_3} have the \aleph_2 -c.c.
 - Use the supercompact embedding of κ₂ together with a combinatorial argument (quite involved).

- It remains to show that in the final model $V^{\mathbb{L}_2*\mathbb{L}_3*\mathbb{S}_{\omega_3}}$,
 - Ithere are no ℵ₁-Kurepa trees, and
 - ② there are no ℵ₂-Kurepa trees.

Lemma (Capturing \aleph_1 -trees by suitable subforcings)

Let T be an \aleph_1 -tree in $V^{\mathbb{L}_2*\mathbb{L}_3*\mathbb{S}_{\omega_3}}$. Then, in $V^{\mathbb{L}_2}$, there exists \mathbb{Q} such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma (Capturing \aleph_1 -trees by suitable subforcings)

Let T be an \aleph_1 -tree in $V^{\mathbb{L}_2*\mathbb{L}_3*\mathbb{S}_{\omega_3}}$. Then, in $V^{\mathbb{L}_2}$, there exists \mathbb{Q} such that

() \mathbb{Q} is a regular subforcing of $\mathbb{L}_3 * \mathbb{S}_{\omega_3}$ such that $T \in V^{\mathbb{L}_2 * \mathbb{Q}}$,

Lemma (Capturing \aleph_1 -trees by suitable subforcings)

Let T be an \aleph_1 -tree in $V^{\mathbb{L}_2*\mathbb{L}_3*\mathbb{S}_{\omega_3}}$. Then, in $V^{\mathbb{L}_2}$, there exists \mathbb{Q} such that

() \mathbb{Q} is a regular subforcing of $\mathbb{L}_3 * \mathbb{S}_{\omega_3}$ such that $T \in V^{\mathbb{L}_2 * \mathbb{Q}}$,

- ${\it 2} \ |\mathbb{Q}| < \aleph_2,$
- **3** \mathbb{Q} is σ -closed, and

Lemma (Capturing \aleph_1 -trees by suitable subforcings)

Let T be an \aleph_1 -tree in $V^{\mathbb{L}_2*\mathbb{L}_3*\mathbb{S}_{\omega_3}}$. Then, in $V^{\mathbb{L}_2}$, there exists \mathbb{Q} such that

() \mathbb{Q} is a regular subforcing of $\mathbb{L}_3 * \mathbb{S}_{\omega_3}$ such that $T \in V^{\mathbb{L}_2 * \mathbb{Q}}$,

- ${\it 2} \ |\mathbb{Q}| < \aleph_2,$
- **3** \mathbb{Q} is σ -closed, and
- $(\mathbb{L}_3 * \mathbb{S}_{\omega_3})/\mathbb{Q}$ is σ -closed.

Lemma (Capturing \aleph_1 -trees by suitable subforcings)

Let T be an \aleph_1 -tree in $V^{\mathbb{L}_2*\mathbb{L}_3*\mathbb{S}_{\omega_3}}$. Then, in $V^{\mathbb{L}_2}$, there exists \mathbb{Q} such that

- **(**) \mathbb{Q} is a regular subforcing of $\mathbb{L}_3 * \mathbb{S}_{\omega_3}$ such that $T \in V^{\mathbb{L}_2 * \mathbb{Q}}$,
- ${\it 2} \ |\mathbb{Q}| < \aleph_2,$
- **3** \mathbb{Q} is σ -closed, and
- $(\mathbb{L}_3 * \mathbb{S}_{\omega_3})/\mathbb{Q}$ is σ -closed.

Lemma

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that (either) \mathbb{Q} is $<\aleph_n$ -distributive Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

No \aleph_1 -Kurepa trees

Lemma (Capturing \aleph_1 -trees by suitable subforcings)

Let T be an \aleph_1 -tree in $V^{\mathbb{L}_2*\mathbb{L}_3*\mathbb{S}_{\omega_3}}$. Then, in $V^{\mathbb{L}_2}$, there exists \mathbb{Q} such that

- **(**) \mathbb{Q} is a regular subforcing of $\mathbb{L}_3 * \mathbb{S}_{\omega_3}$ such that $T \in V^{\mathbb{L}_2 * \mathbb{Q}}$,
- ${\it 2} \ |\mathbb{Q}| < \aleph_2,$
- **3** \mathbb{Q} is σ -closed, and
- $(\mathbb{L}_3 * \mathbb{S}_{\omega_3})/\mathbb{Q}$ is σ -closed.
 - Apply the generalization of Silver's Theorem: T is not an \aleph_1 -Kurepa tree in $V^{\mathbb{L}_2*\mathbb{Q}}$.

No \aleph_1 -Kurepa trees

Lemma (Capturing \aleph_1 -trees by suitable subforcings)

Let T be an \aleph_1 -tree in $V^{\mathbb{L}_2*\mathbb{L}_3*\mathbb{S}_{\omega_3}}$. Then, in $V^{\mathbb{L}_2}$, there exists \mathbb{Q} such that

- **(**) \mathbb{Q} is a regular subforcing of $\mathbb{L}_3 * \mathbb{S}_{\omega_3}$ such that $T \in V^{\mathbb{L}_2 * \mathbb{Q}}$,
- ${\color{black}@} |\mathbb{Q}| < \aleph_2,$
- **3** \mathbb{Q} is σ -closed, and
- $(\mathbb{L}_3 * \mathbb{S}_{\omega_3})/\mathbb{Q}$ is σ -closed.
 - Apply the generalization of Silver's Theorem: T is not an \aleph_1 -Kurepa tree in $V^{\mathbb{L}_2*\mathbb{Q}}$.
 - By (4), using Silver's Lemma, (L₃ * S_{ω3})/Q does not add branches to *T*.

Lemma (Capturing \aleph_1 -trees by suitable subforcings)

Let T be an \aleph_1 -tree in $V^{\mathbb{L}_2*\mathbb{L}_3*\mathbb{S}_{\omega_3}}$. Then, in $V^{\mathbb{L}_2}$, there exists \mathbb{Q} such that

- **(**) \mathbb{Q} is a regular subforcing of $\mathbb{L}_3 * \mathbb{S}_{\omega_3}$ such that $T \in V^{\mathbb{L}_2 * \mathbb{Q}}$,
- ${\it 2} \ |\mathbb{Q}| < \aleph_2,$
- **3** \mathbb{Q} is σ -closed, and
- $(\mathbb{L}_3 * \mathbb{S}_{\omega_3})/\mathbb{Q}$ is σ -closed.
 - Apply the generalization of Silver's Theorem: T is not an \aleph_1 -Kurepa tree in $V^{\mathbb{L}_2*\mathbb{Q}}$.
 - By (4), using Silver's Lemma, (L₃ * S_{ω3})/Q does not add branches to *T*.
 - So T is not an \aleph_1 -Kurepa tree in $V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\omega_3}}$.

We use the following lemma:

Lemma (Mitchell)

Let \mathbb{P} be a forcing where $\mathbb{P} \times \mathbb{P}$ has the \aleph_n -c.c.. Then \mathbb{P} does not add branches to trees of height \aleph_n .

イロト 不得 トイヨト イヨト

э

We use the following lemma:

Lemma (Mitchell)

Let \mathbb{P} be a forcing where $\mathbb{P} \times \mathbb{P}$ has the \aleph_n -c.c.. Then \mathbb{P} does not add branches to trees of height \aleph_n .

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

• Let $T \in V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\omega_3}}$ be an \aleph_2 -tree.

We use the following lemma:

Lemma (Mitchell)

Let \mathbb{P} be a forcing where $\mathbb{P} \times \mathbb{P}$ has the \aleph_n -c.c.. Then \mathbb{P} does not add branches to trees of height \aleph_n .

- Let $T \in V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\omega_3}}$ be an \aleph_2 -tree.
- Since \mathbb{S}_{ω_3} has the \aleph_2 -c.c., there exists $\alpha < \omega_3$ such that $T \in V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\alpha}}$.

We use the following lemma:

Lemma (Mitchell)

Let \mathbb{P} be a forcing where $\mathbb{P} \times \mathbb{P}$ has the \aleph_n -c.c.. Then \mathbb{P} does not add branches to trees of height \aleph_n .

- Let $T \in V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\omega_3}}$ be an \aleph_2 -tree.
- Since \mathbb{S}_{ω_3} has the \aleph_2 -c.c., there exists $\alpha < \omega_3$ such that $T \in V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\alpha}}$.

Lemma

Let λ be an inaccessible cardinal and $\mathbb{L} = \operatorname{col}(\aleph_n, <\lambda)$ with $n \ge 1$. In $V^{\mathbb{L}}$, let \mathbb{Q} be a forcing of size $\le \aleph_n$ such that (or) \mathbb{Q} has the \aleph_n -c.c. Then there is no \aleph_n -Kurepa tree in $V^{\mathbb{L}*\mathbb{Q}}$.

We use the following lemma:

Lemma (Mitchell)

Let \mathbb{P} be a forcing where $\mathbb{P} \times \mathbb{P}$ has the \aleph_n -c.c.. Then \mathbb{P} does not add branches to trees of height \aleph_n .

- Let $T \in V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\omega_3}}$ be an \aleph_2 -tree.
- Since \mathbb{S}_{ω_3} has the \aleph_2 -c.c., there exists $\alpha < \omega_3$ such that $T \in V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\alpha}}$.
- Since $|\mathbb{S}_{\alpha}| \leq \aleph_2$, by the generalization of Silver's Theorem, *T* is not an \aleph_2 -Kurepa tree in $V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\alpha}}$.

We use the following lemma:

Lemma (Mitchell)

Let \mathbb{P} be a forcing where $\mathbb{P} \times \mathbb{P}$ has the \aleph_n -c.c.. Then \mathbb{P} does not add branches to trees of height \aleph_n .

- Let $T \in V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\omega_3}}$ be an \aleph_2 -tree.
- Since \mathbb{S}_{ω_3} has the \aleph_2 -c.c., there exists $\alpha < \omega_3$ such that $T \in V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\alpha}}$.
- Since $|\mathbb{S}_{\alpha}| \leq \aleph_2$, by the generalization of Silver's Theorem, T is not an \aleph_2 -Kurepa tree in $V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\alpha}}$.
- $\mathbb{S}_{\omega_3}/\mathbb{S}_{\alpha}$ has the \aleph_2 -c.c., and even $\mathbb{S}_{\omega_3}/\mathbb{S}_{\alpha} \times \mathbb{S}_{\omega_3}/\mathbb{S}_{\alpha}$ has the \aleph_2 -c.c., so $\mathbb{S}_{\omega_3}/\mathbb{S}_{\alpha}$ does not add branches to T.

We use the following lemma:

Lemma (Mitchell)

Let \mathbb{P} be a forcing where $\mathbb{P} \times \mathbb{P}$ has the \aleph_n -c.c.. Then \mathbb{P} does not add branches to trees of height \aleph_n .

- Let $T \in V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\omega_3}}$ be an \aleph_2 -tree.
- Since \mathbb{S}_{ω_3} has the \aleph_2 -c.c., there exists $\alpha < \omega_3$ such that $T \in V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\alpha}}$.
- Since $|\mathbb{S}_{\alpha}| \leq \aleph_2$, by the generalization of Silver's Theorem, T is not an \aleph_2 -Kurepa tree in $V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\alpha}}$.
- $\mathbb{S}_{\omega_3}/\mathbb{S}_{\alpha}$ has the \aleph_2 -c.c., and even $\mathbb{S}_{\omega_3}/\mathbb{S}_{\alpha} \times \mathbb{S}_{\omega_3}/\mathbb{S}_{\alpha}$ has the \aleph_2 -c.c., so $\mathbb{S}_{\omega_3}/\mathbb{S}_{\alpha}$ does not add branches to T.
- So T is not an \aleph_2 -Kurepa tree in $V^{\mathbb{L}_2 * \mathbb{L}_3 * \mathbb{S}_{\omega_3}}$.

It follows from ω -many supercompact cardinals, that there exists a model of ZFC in which for all $0 < n \in \omega$

・ロト ・ 雪 ト ・ ヨ ト

э

It follows from ω -many supercompact cardinals, that there exists a model of ZFC in which for all $0 < n \in \omega$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

there exists an \aleph_n -Aronszajn tree, all \aleph_n -Aronszajn trees are special, and there exists no \aleph_n -Kurepa tree.

It follows from ω -many supercompact cardinals, that there exists a model of ZFC in which for all $0 < n \in \omega$

there exists an \aleph_n -Aronszajn tree, all \aleph_n -Aronszajn trees are special, and there exists no \aleph_n -Kurepa tree.

 Use an iteration of Lévy collapses, to make the supercompact cardinals become the ℵ_n's.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

It follows from ω -many supercompact cardinals, that there exists a model of ZFC in which for all $0 < n \in \omega$

there exists an \aleph_n -Aronszajn tree, all \aleph_n -Aronszajn trees are special, and there exists no \aleph_n -Kurepa tree.

 Use an iteration of Lévy collapses, to make the supercompact cardinals become the ℵ_n's.

 Use forcings to specialize all ℵ_n-Aronszajn trees in a mixed support iteration.

It follows from ω -many supercompact cardinals, that there exists a model of ZFC in which for all $0 < n \in \omega$

there exists an \aleph_n -Aronszajn tree, all \aleph_n -Aronszajn trees are special, and there exists no \aleph_n -Kurepa tree.

 Use an iteration of Lévy collapses, to make the supercompact cardinals become the ℵn's.

- Use forcings to specialize all ℵ_n-Aronszajn trees in a mixed support iteration.
- The iteration can be factorized into a forcing which is $<\aleph_n$ -closed, followed by a forcing which has the \aleph_n -c.c.

It follows from ω -many supercompact cardinals, that there exists a model of ZFC in which for all $0 < n \in \omega$

there exists an \aleph_n -Aronszajn tree, all \aleph_n -Aronszajn trees are special, and there exists no \aleph_n -Kurepa tree.

- Use an iteration of Lévy collapses, to make the supercompact cardinals become the ℵ_n's.
- Use forcings to specialize all ℵ_n-Aronszajn trees in a mixed support iteration.
- The iteration can be factorized into a forcing which is $<\aleph_n$ -closed, followed by a forcing which has the \aleph_n -c.c.
- Capture an \aleph_n -tree with a subforcing of size at most \aleph_n .

It follows from ω -many supercompact cardinals, that there exists a model of ZFC in which for all $0 < n \in \omega$

there exists an \aleph_n -Aronszajn tree, all \aleph_n -Aronszajn trees are special, and there exists no \aleph_n -Kurepa tree.

- Use an iteration of Lévy collapses, to make the supercompact cardinals become the ℵn's.
- Use forcings to specialize all ℵ_n-Aronszajn trees in a mixed support iteration.
- The iteration can be factorized into a forcing which is $<\aleph_n$ -closed, followed by a forcing which has the \aleph_n -c.c.
- Capture an \aleph_n -tree with a subforcing of size at most \aleph_n .
- Show that it is not an \aleph_n -Kurepa tree here.
- Show that the quotient forcing does not add branches.

It follows from a proper class of supercompact cardinals, that there exists a model of ZFC in which for all regular cardinals κ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

there exists a κ^+ -Aronszajn tree, all κ^+ -Aronszajn trees are special, and there exists no κ^+ -Kurepa tree.

It follows from a proper class of supercompact cardinals, that there exists a model of ZFC in which for all regular cardinals κ

there exists a κ^+ -Aronszajn tree, all κ^+ -Aronszajn trees are special, and there exists no κ^+ -Kurepa tree.

• Use an Easton support iteration to combine the forcings which work for ω -many successive regular cardinals.

Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All \aleph_n Successors of regulars

Thank you!

Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All \aleph_n Successors of regulars

Thank you!

Question

Can we specialize trees of height \aleph_n which have no cofinal branches but levels of size $\geq \aleph_n$? Is it possible to specialize these trees and control the existence of \aleph_n -Kurepa trees at the same time?

We can also be more precise about the Kurepa trees:

Question

Can we control the exact number of branches of the \aleph_n -Kurepa trees in a model in which all \aleph_n -Aronszajn trees are special?

Question

Is it possible to specialize Aronszajn trees while keeping limit cardinals strong limit?

Question

Is it possible to obtain a model for the main theorem (at all successors of regulars) in which there are still inaccessibles?